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Reading a Paper with Purpose – Data Tables 
Example 1 
Literature review of vehicle ownership models with data requirements, strengths and shortcomings. 

Purpose: Decide on the appropriate vehicle ownership model to use. 

Table 1: Exogenous static models. 

Study example Modeling 
approach 

Data requirements Strengths Shortcomings 

Potoglou and 
Kanaroglou 
(2008) 

2 models: 
Multinomial 
logit (MNL) 
and ordered 
logit (OL) 

Internet-survey in the 
Census Metropolitan 
Area of Hamilton 
(CIBER-CARS survey) 
with two stages: Past 
and current vehicle 
ownership, and stated 
choices experiment on 
future vehicle 
preferences. Combined 
with GIS data. 

Both: Closed form (i.e., 
computational simplicity).  
OL: Easier parameter estimation.  
MNL: Better representation than 
ordered logit. Less restriction on 
the household attributes to 
include 

Both: Dynamics associated with the random 
unobserved variables are not handled. 
Assume proportional substitution across 
alternatives which is not always suitable (i.e., 
changes in one alternative probability lead to 
proportional adjustments of other 
alternative probabilities). Assume 
independence of irrelevant alternatives (IIA) 
property (i.e., the unobserved factors of the 
alternative utilities are independent). 
Population homogeneity assumption (i.e., 
exogenous variables are the same for the 
entire population). 
OL: Only appropriate when small number of 
categories.  
MNL: More parameters to estimate than 
ordered logit. 

Mohammadian 
and Miller 
(2003) 

Nested logit 
with two 
levels 

Retrospective survey 
(Toronto Area Car 
Ownership Study). 
Information on 
household vehicle 
transactions from 1990 

Do not require IIA property. 
Generalization of the multinomial 
logit model. Allow for correlation 
of alternative utilities in common 
nests. Vehicle ownership with 
vehicles size. 

Alternatives in a common nest have equal 
cross-elasticities. Population homogeneity 
assumption. 
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to 1998 in Toronto. 
Vehicle attributes from 
Canadian Vehicle 
Specification System 
and fuel consumption 
from Fuel Economy 
Guide Database. 

Mohammadian 
and Miller 
(2002) 

Multilayer 
perceptron 
artificial 
neural 
network 

Same than previous 
study (A. K. 
Mohammadian and 
Miller 2003) 

Quicker than traditional discrete 
choice models. Better predictive 
potential than Nested logit 
model. Vehicle ownership with 
vehicles size. 

Black box. Lack of explicit sensitivity 
measures due to the lack of transparency. 
Difficult to integrate artificial neural network 
into larger framework (compared to nested 
models). Population homogeneity 
assumption. 

Shay and 
Khattak (2012) 

Poisson 
regression 

Two cross-sectional 
datasets from the 
Charlotte metro area 
(U.S.) providing 
household descriptions, 
travellers and trips. 

Rely on single-equation models, 
more simple to settle with a 
closed form solution.  

Only vehicle ownership without vehicle type. 
Assume that number of automobiles owned 
by household is independently Poisson 
distributed (i.e., mean equal to the variance), 
which is unjustified: It does not adequately 
represent over- or under-dispersed data. Has 
non-zero probability for values higher than 3 
vehicles per household, which is very 
unlikely. Population homogeneity 
assumption. 

Anowar et al. 
(2014) 

2 models: 
Latent 
segmentation 
based 
ordered logit 
(LSOL) and 
latent 
segmentation 
based 
multinomial 
logit (LSMNL) 

Origin–Destination (O–
D) surveys of Quebec 
City (2001) 

Both: Can deal with systemic 
heterogeneity of observed 
variables through set of 
exogenous variables for each 
population segment. Include land 
use characteristics and 
household demographics. Latent 
models outperform traditional 
models. 
LSMNL:  Higher predictive 
performance than LSOL 

Only vehicle ownership without vehicle type. 
Prone to stability issues in the estimation 
process. 
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Endogenous static models 

Study 
example 

Modeling 
approach 

Data requirements Strengths Shortcomings 

Weinberger 
and Goetzke 
(2010) 

Multinomial 
probit 

2000 US census 5 % 
public use micro 
sample (PUMS) of 
major U.S. cities. 

Can jointly model vehicle 
ownership along with other 
attributes to account (e.g., 
residential location) for 
simultaneity of the attributes. 
Relaxation of IIA assumption 
and allow substitution 
pattern of alternatives. 

Only vehicle ownership without vehicle 
type. No closed form (i.e., 
computational intensive). Cannot be 
used with continuous travel attribute. 

Bhat (2008) Multiple 
discrete 
continuous 
extreme values 
(MDCEV) 

2000 San Francisco 
Bay Area Travel 
Survey (BATS) 

Model vehicle ownership 
decision along with discrete 
(e.g., types of vehicles) and 
continuous (i.e., VKT) 
decisions. Can capture many 
vehicle classifications. Can 
handle complementarity as 
well as substitution among 
goods. No constraint of 
additive separability. Closed 
form solution. 

Do not consider the current household 
attributes by the process of acquiring a 
vehicle as instantaneous. Cannot 
capture the vehicle transactions.  

Fang (2008) Bayesian 
multivariate 
ordered probit 
and tobit 

2001 National 
Household Travel 
Survey data 

Combine vehicle type choice 
(2 sizes) with vehicle usage. 
Closed form solution. Similar 
results to MDCEV (Bhat 2008) 
but easier to solve and faster. 
No constraint on total 
travelled distance. 

Computational intensive with 
increasing vehicle categories because 
equation increases proportionally.  
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Dynamic models 

Study example Modeling 
approach 

Data requirements Strengths Shortcomings 

Mohammadian 
and Rashidi 
(2007) 

Competing 
hazard-based 
duration 

Toronto Area Car 
Ownership Study 
(TACOS) survey 

Can capture probability of 
occurrence at a specific time. 
Vehicle ownerships along 
vehicle transaction behavior.  

Only vehicle ownership without 
vehicle type. Require time-series data, 
not always available. Assume 
independence among hazard events, 
which is unlikely. Cannot handle 
heterogeneity effects. 

Paleti et al. 
(2011) 

Copula-based 
joint GEV-
based logit-
regression 
model 

Residential survey 
component of the 
California Vehicle 
Survey data: 
Revealed choice on 
the current 
household vehicle 
fleet and usage. 
Stated Intention data 
on vehicle 
replacement and 
future vehicle 
characteristics. Then 
stated preference 
data on future 
vehicle types and 
technology.  

Closed form solution. One 
module that simulates 
vehicle ownership (by size 
and technology) along 
decision of residential choice 
and vehicle usage. One 
module that simulates the 
fleet over time including 
replacement, acquisition and 
disposal. 

It requires longitudinal data on the 
dynamics of household vehicles. 
Assume independence of irrelevant 
alternatives (IIA) property.  

Table 1: Examples of vehicle ownership models with data requirements, strengths and shortcomings. 
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Example 2 
Literature review of land-use regression models 

Purpose: Decide on the appropriate protocol. 

Table 2: Summary of land-use regression (LUR) model protocols for Ultrafine Particles (UFP) 

Study Location 
Type of 
data 
collection 

Number of 
segments/points 
sampled 

Time spent 
per 
point/segment 
and/or 
number of 
visits 

R2 of the LUR 
model (* 
means 
adjusted R2) 

Hankey and 
Marshall 2 

Minneapolis 
(U.S.A.) 

Mobile 
(bike) 

1,101 
aggregation 
locations (spatial 
resolution: 
100m, temporal 
resolution: 1s) 

200 seconds 
(afternoon), 
and less than 
100 seconds 
(morning) on 
average 

0.50 (morning) 
and 0.48 
(afternoon)  
 

Sabaliauskas 
et al. 3 

Toronto (Canada) Mobile 
(pedestrian) 

112 road 
segments 

5 to 10 
minutes  

0.72 

Patton et al. 
4 

Boston (U.S.A.) Mobile (car) Each one-second 
measurement 
was kept 

1 second 0.23 to 0.42 
(depending on 
neighbourhood 
considered) 

Kerckhoffs 
et al. 
5 

Amsterdam and 
Rotterdam 
(Netherlands) 

Mobile 
(electric 
car) 

2,964 road 
segments (745 
visited twice) 
 

18 seconds on 
average 
 

0.13 (all 
segments) 
0.18 (segments 
visited twice) 

Farrell et al. 
6 

Montreal 
(Canada) 

Mobile 
(bike) 

4,058 road 
segments 

Between 1 and 
52 visits 

0.3812 

Weichenthal 
et al. 7 

Montreal 
(Canada) 

Mobile 
(bike in 
summer, 
cars in 
winter) 

414 road 
segments 

405 seconds 
on average 
(always more 
than 200)  

0.62 

Weichenthal 
et al. 8 

Toronto (Canada) Mobile (car) 405 road 
segments 

10 minutes on 
average 
(always more 
than 250 
seconds)  

0.67*  

Rivera et al. 
9 

Girona and close 
cities (Spain) 

Fixed 644 fixed sites 15 minutes 0.36* 

Saraswat et 
al. 10 

New Delhi (India) Fixed 18 (morning) 
37 (afternoon) 

More than 1h 0.28 (morning) 
0.23 
(afternoon) 

Ghassoun et 
al. 11 

Braunschweig 
(Germany) 

Fixed 
 

27 fixed points 45 minutes 0.74 (summer) 
0.85 (winter) 
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Montagne 
et al. 12 

Amsterdam and 
Rotterdam 
(Netherlands) 

Fixed 
 

161 sites 90 minutes  0.37 

Kerckhoffs 
et al. 
5 

Amsterdam and 
Rotterdam 
(Netherlands) 

Fixed   128 fixed sites 60 minutes 
 

0.36 

van Nunen 
et al. 1> 

Basel 
(Switzerland), 
Heraklion 
(Greece), 
Amsterdam, 
Maastricht, and 
Utrecht (“The 
Netherlands”), 
Norwich 
(United Kingdom), 
Sabadell (Spain), 
and Turin (Italy) 

Fixed 160 in general,  
240 sites for 
“The 
Netherlands”  

90 minutes 0.28 to 0.48 

 

Example 3 
 

Table 3. Optimization of automated external defibrillator placement and retrieval literature. 

Study 
Target 
population 

Models Outcomes Result 

Tsai et al. 
2012, 
Huang and 
Wen 2014 

Public OHCA 

Genetic algorithm 
covering model 
(spatial and 
temporal weights) 

Spatiotemporal 
OHCA coverage 

spatiotemporal model 
provided a relative increase in 
spatiotemporal OHCA 
coverage of 18.0%-26.2% over 
the spatial model; AED 
configurations vary by model 
weights 

Chan et al. 
2013  

Public out-of-
hospital 
cardiac arrest 
(OHCA) 

Maximum coverage 
location problem 
(MCLP), Population 
guided heuristic 

Spatial OHCA 
coverage 

MCLP provided significantly 
more spatial OHCA coverage 
compared to the population 
guided heuristic, regardless of 
the number of AEDs placed 

Siddiq et 
al. 2013 

Public OHCA 
MCLP – varying 
coverage radius 

Spatial OHCA 
coverage 

Quantified relationship 
between coverage radius and 
spatial coverage 

Chan et al. 
2016  

Public OHCA Probabilistic MCLP 
Probability of 
AED retrieval 

Quantified impact of differing 
bystander AED retrieval 
behaviors on probability and 
configuration. 

Sun et al. 
2016, 

Public OHCA 
Spatiotemporal 
MCLP, MCLP 

Spatiotemporal 
OHCA coverage 

DMCLP can reverse the 
negative effects of limited 
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Sun et al. 
2018 

temporal accessibility on 
spatiotemporal coverage of 
AED placements based on 
MCLP; DMCLP generalizable 
from NA to EU 

Boutilier 
et al. 2017  

Private and 
public OHCA 

MCLP and queuing 
model 

Drone AED 
delivery 
response time 

Quantified relationship 
between number of drone 
bases and drones to reach a 
target OHCA response time. 

Tierney et 
al. 2018 

Public OHCA Relocation - MCLP 
Spatial OHCA 
coverage 

Relocation models have been 
shown to have relative 
increases in spatial OHCA 
coverage between 11.5% - 
121.9% 

Chan et al. 
2018  

Public OHCA 
Robust MCLP – 
uncertainty in 
demand, MCLP 

Spatial OHCA 
coverage 

Robust MCLP improved spatial 
coverage under typical and 
worst-cases of demand 
uncertainty. Performed nearly 
as well as ex-post MCLP. 

Lee et al. 
2019  

In-hospital 
cardiac arrest  

P-median, 
Simulated demand 

Distance to AED 

Optimal placements 
decreased the average 
distance of simulated arrest to 
a defibrillator by 77.8%, 
compared to existing 
placements 

Sun et al. 
2019  

Public OHCA 

Multi-period 
spatiotemporal 
MCLP, Logistic 
regression 

Spatiotemporal 
OHCA coverage, 
bystander 
defibrillation, 
30-day survival 

Relative increase in 
spatiotemporal OHCA 
coverage of 52.0-95.9% over 
the existing AED network, 
corresponding to an estimated 
52.9-83.5% relative increase in 
bystander defibrillation and 
estimated 11.0-13.3% relative 
increase in 30-day survival 
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