Reading a Paper with Purpose – Data Tables

Example 1

Literature review of vehicle ownership models with data requirements, strengths and shortcomings.

Purpose: Decide on the appropriate vehicle ownership model to use.

Study example	Modeling	Data requirements	Strengths	Shortcomings
	approach			
Potoglou and	2 models:	Internet-survey in the	Both: Closed form (i.e.,	Both: Dynamics associated with the random
Kanaroglou	Multinomial	Census Metropolitan	computational simplicity).	unobserved variables are not handled.
(2008)	logit (MNL)	Area of Hamilton	OL : Easier parameter estimation.	Assume proportional substitution across
	and ordered	(CIBER-CARS survey)	MNL: Better representation than	alternatives which is not always suitable (i.e.,
	logit (OL)	with two stages: Past	ordered logit. Less restriction on	changes in one alternative probability lead to
		and current vehicle	the household attributes to	proportional adjustments of other
		ownership, and stated	include	alternative probabilities). Assume
		choices experiment on		independence of irrelevant alternatives (IIA)
		future vehicle		property (i.e., the unobserved factors of the
		preferences. Combined		alternative utilities are independent).
		with GIS data.		Population homogeneity assumption (i.e.,
				exogenous variables are the same for the
				entire population).
				OL: Only appropriate when small number of
				categories.
				MNL: More parameters to estimate than
				ordered logit.
Mohammadian	Nested logit	Retrospective survey	Do not require IIA property.	Alternatives in a common nest have equal
and Miller	with two	(Toronto Area Car	Generalization of the multinomial	cross-elasticities. Population homogeneity
(2003)	levels	Ownership Study).	logit model. Allow for correlation	assumption.
		Information on	of alternative utilities in common	
		household vehicle	nests. Vehicle ownership with	
		transactions from 1990	vehicles size.	

Table 1: Exogenous static models.

		to 1998 in Toronto. Vehicle attributes from Canadian Vehicle Specification System and fuel consumption from Fuel Economy Guide Database.		
Mohammadian and Miller (2002)	Multilayer perceptron artificial neural network	Same than previous study (A. K. Mohammadian and Miller 2003)	Quicker than traditional discrete choice models. Better predictive potential than Nested logit model. Vehicle ownership with vehicles size.	Black box. Lack of explicit sensitivity measures due to the lack of transparency. Difficult to integrate artificial neural network into larger framework (compared to nested models). Population homogeneity assumption.
Shay and Khattak (2012)	Poisson regression	Two cross-sectional datasets from the Charlotte metro area (U.S.) providing household descriptions, travellers and trips.	Rely on single-equation models, more simple to settle with a closed form solution.	Only vehicle ownership without vehicle type. Assume that number of automobiles owned by household is independently Poisson distributed (i.e., mean equal to the variance), which is unjustified: It does not adequately represent over- or under-dispersed data. Has non-zero probability for values higher than 3 vehicles per household, which is very unlikely. Population homogeneity assumption.
Anowar et al. (2014)	2 models: Latent segmentation based ordered logit (LSOL) and latent segmentation based multinomial logit (LSMNL)	Origin–Destination (O– D) surveys of Quebec City (2001)	Both: Can deal with systemic heterogeneity of observed variables through set of exogenous variables for each population segment. Include land use characteristics and household demographics. Latent models outperform traditional models. LSMNL : Higher predictive performance than LSOL	Only vehicle ownership without vehicle type. Prone to stability issues in the estimation process.

Endogenous static models						
Study	Modeling	Data requirements	Strengths	Shortcomings		
example	approach					
Weinberger	Multinomial	2000 US census 5 %	Can jointly model vehicle	Only vehicle ownership without vehicle		
and Goetzke	probit	public use micro	ownership along with other	type. No closed form (i.e.,		
(2010)		sample (PUMS) of	attributes to account (e.g.,	computational intensive). Cannot be		
		major U.S. cities.	residential location) for	used with continuous travel attribute.		
			simultaneity of the attributes.			
			Relaxation of IIA assumption			
			and allow substitution			
			pattern of alternatives.			
Bhat (2008)	Multiple	2000 San Francisco	Model vehicle ownership	Do not consider the current household		
	discrete	Bay Area Travel	decision along with discrete	attributes by the process of acquiring a		
	continuous	Survey (BATS)	(e.g., types of vehicles) and	vehicle as instantaneous. Cannot		
	extreme values		continuous (i.e., VKT)	capture the vehicle transactions.		
	(MDCEV)		decisions. Can capture many			
			vehicle classifications. Can			
			handle complementarity as			
			well as substitution among			
			goods. No constraint of			
			additive separability. Closed			
			form solution.			
Fang (2008)	Bayesian	2001 National	Combine vehicle type choice	Computational intensive with		
	multivariate	Household Travel	(2 sizes) with vehicle usage.	increasing vehicle categories because		
	ordered probit	Survey data	Closed form solution. Similar	equation increases proportionally.		
	and tobit		results to MDCEV (Bhat 2008)			
			but easier to solve and faster.			
			No constraint on total			
			travelled distance.			

Dynamic models						
Study example	Modeling approach	Data requirements	Strengths	Shortcomings		
Mohammadian and Rashidi (2007)	Competing hazard-based duration	Toronto Area Car Ownership Study (TACOS) survey	Can capture probability of occurrence at a specific time. Vehicle ownerships along vehicle transaction behavior.	Only vehicle ownership without vehicle type. Require time-series data, not always available. Assume independence among hazard events, which is unlikely. Cannot handle heterogeneity effects.		
Paleti et al. (2011)	Copula-based joint GEV- based logit- regression model	Residential survey component of the California Vehicle Survey data: Revealed choice on the current household vehicle fleet and usage. Stated Intention data on vehicle replacement and future vehicle characteristics. Then stated preference data on future vehicle types and technology.	Closed form solution. One module that simulates vehicle ownership (by size and technology) along decision of residential choice and vehicle usage. One module that simulates the fleet over time including replacement, acquisition and disposal.	It requires longitudinal data on the dynamics of household vehicles. Assume independence of irrelevant alternatives (IIA) property.		

Table 1: Examples of vehicle ownership models with data requirements, strengths and shortcomings.

References

- Anowar, Sabreena, Shamsunnahar Yasmin, Naveen Eluru, and Luis F Miranda-moreno. 2014. "Analyzing Car Ownership in Quebec City : A Comparison of Traditional and Latent Class Ordered and Unordered." *Transportation*, 1013–39. https://doi.org/10.1007/s11116-014-9522-9.
- Bhat, Chandra R. 2008. "The Multiple Discrete-Continuous Extreme Value (MDCEV) Model : Role of Utility Function Parameters, Identification Considerations, and Model Extensions" 42: 274–303. https://doi.org/10.1016/j.trb.2007.06.002.
- Fang, Hao Audrey. 2008. "A Discrete Continuous Model of Households' Vehicle Choice and Usage, with an Application to the Effects of Residential Density." *Transportation Research Part B* 42: 736– 58. https://doi.org/10.1016/j.trb.2008.01.004.
- Mohammadian, Abolfazl Kouros, and Eric J Miller. 2003. "An Empirical Investigation of Household Vehicle Type Choice Decisions." *Journal of Transportation Research Record*.
- Mohammadian, Abolfazl, and Taha H. Rashidi. 2007. "Modeling Household Vehicle Transaction Behavior Competing Risk Duration Approach." *Journal of the Transportation Research Board*, 9–16. https://doi.org/10.3141/2014-02.
- Paleti, Rajesh, Naveen Eluru, Chandra R Bhat, Ram M Pendyala, Thomas J Adler, and Konstadinos G Goulias. 2011. "Design of Comprehensive Microsimulator of Household Vehicle Fleet Composition, Utilization, and Evolution." *Transportation Research Record: Journal of the Transportation Research Board*. https://doi.org/10.3141/2254-06.
- Potoglou, Dimitris, and Pavlos S Kanaroglou. 2008. "Modelling Car Ownership in Urban Areas : A Case Study." *Journal of Transport Geography* 16: 42–54. https://doi.org/10.1016/j.jtrangeo.2007.01.006.
- Shay, Elizabeth, and Asad J Khattak. 2012. "Household Travel Decision Chains : Residential Environment, Automobile Ownership, Trips and Mode Choice Household Travel Decision Chains : Residential." International Journal of Sustainable Transportation, 8318 (May 2011). https://doi.org/10.1080/15568318.2011.560363.
- Weinberger, Rachel, and Frank Goetzke. 2010. "Unpacking Preference : How Previous Experience Affects Auto Ownership in the United States." *Urban Studies* 47 (September): 2111–28. https://doi.org/10.1177/0042098009357354.

Example 2

Literature review of land-use regression models

Purpose: Decide on the appropriate protocol.

Table 2: Summary of land-use regression (LUR) model protocols for Ultrafine Particles (UFP)

				Time spent	
Study	Location	Type of data collection	Number of segments/points sampled	per point/segment and/or number of visits	R ² of the LUR model (* means adjusted R ²)
Hankey and	Minneapolis	Mobile	1,101	200 seconds	0.50 (morning)
Marshall ²	(U.S.A.)	(bike)	aggregation locations (spatial resolution: 100m, temporal	(afternoon), and less than 100 seconds (morning) on	and 0.48 (afternoon)
Cabaliavakaa	Terente (Canada)	Mabila	112 read	average	0.72
et al. ³	Toronto (Canada)	(pedestrian)	segments	minutes	0.72
Patton et al. 4	Boston (U.S.A.)	Mobile (car)	Each one-second measurement was kept	1 second	0.23 to 0.42 (depending on neighbourhood considered)
Kerckhoffs et al. ⁵	Amsterdam and Rotterdam (Netherlands)	Mobile (electric car)	2,964 road segments (745 visited twice)	18 seconds on average	0.13 (all segments) 0.18 (segments visited twice)
Farrell et al.	Montreal (Canada)	Mobile (bike)	4,058 road segments	Between 1 and 52 visits	0.3812
Weichenthal et al. ⁷	Montreal (Canada)	Mobile (bike in summer, cars in winter)	414 road segments	405 seconds on average (always more than 200)	0.62
Weichenthal et al. ⁸	Toronto (Canada)	Mobile (car)	405 road segments	10 minutes on average (always more than 250 seconds)	0.67*
Rivera et al.	Girona and close cities (Spain)	Fixed	644 fixed sites	15 minutes	0.36*
Saraswat et al. ¹⁰	New Delhi (India)	Fixed	18 (morning) 37 (afternoon)	More than 1h	0.28 (morning) 0.23 (afternoon)
Ghassoun et al. ¹¹	Braunschweig (Germany)	Fixed	27 fixed points	45 minutes	0.74 (summer) 0.85 (winter)

Montagne et al. ¹²	Amsterdam and Rotterdam (Netherlands)	Fixed	161 sites	90 minutes	0.37
Kerckhoffs et al. ⁵	Amsterdam and Rotterdam (Netherlands)	Fixed	128 fixed sites	60 minutes	0.36
van Nunen et al. ¹ >	Basel (Switzerland), Heraklion (Greece), Amsterdam, Maastricht, and Utrecht ("The Netherlands"), Norwich (United Kingdom), Sabadell (Spain), and Turin (Italy)	Fixed	160 in general, 240 sites for "The Netherlands"	90 minutes	0.28 to 0.48

Example 3

Table 3. Optimization of automated external defibrillator placement and retrieval literature.

Study	Target population	Models	Outcomes	Result
Tsai et al. 2012, Huang and Wen 2014	Public OHCA	Genetic algorithm covering model (spatial and temporal weights)	Spatiotemporal OHCA coverage	spatiotemporal model provided a relative increase in spatiotemporal OHCA coverage of 18.0%-26.2% over the spatial model; AED configurations vary by model weights
Chan et al. 2013	Public out-of- hospital cardiac arrest (OHCA)	Maximum coverage location problem (MCLP), Population guided heuristic	Spatial OHCA coverage	MCLP provided significantly more spatial OHCA coverage compared to the population guided heuristic, regardless of the number of AEDs placed
Siddiq et al. 2013	Public OHCA	MCLP – varying coverage radius	Spatial OHCA coverage	Quantified relationship between coverage radius and spatial coverage
Chan et al. 2016	Public OHCA	Probabilistic MCLP	Probability of AED retrieval	Quantified impact of differing bystander AED retrieval behaviors on probability and configuration.
Sun et al. 2016,	Public OHCA	Spatiotemporal MCLP, MCLP	Spatiotemporal OHCA coverage	DMCLP can reverse the negative effects of limited

Sun et al. 2018				temporal accessibility on spatiotemporal coverage of AED placements based on MCLP; DMCLP generalizable from NA to EU
Boutilier et al. 2017	Private and public OHCA	MCLP and queuing model	Drone AED delivery response time	Quantified relationship between number of drone bases and drones to reach a target OHCA response time.
Tierney et al. 2018	Public OHCA	Relocation - MCLP	Spatial OHCA coverage	Relocation models have been shown to have relative increases in spatial OHCA coverage between 11.5% - 121.9%
Chan et al. 2018	Public OHCA	Robust MCLP – uncertainty in demand, MCLP	Spatial OHCA coverage	Robust MCLP improved spatial coverage under typical and worst-cases of demand uncertainty. Performed nearly as well as ex-post MCLP.
Lee et al. 2019	In-hospital cardiac arrest	P-median, Simulated demand	Distance to AED	Optimal placements decreased the average distance of simulated arrest to a defibrillator by 77.8%, compared to existing placements
Sun et al. 2019	Public OHCA	Multi-period spatiotemporal MCLP, Logistic regression	Spatiotemporal OHCA coverage, bystander defibrillation, 30-day survival	Relative increase in spatiotemporal OHCA coverage of 52.0-95.9% over the existing AED network, corresponding to an estimated 52.9-83.5% relative increase in bystander defibrillation and estimated 11.0-13.3% relative increase in 30-day survival

References:

- 1. Tsai, Y. S., P. C. I. Ko, C. Y. Huang and T. H. Wen (2012). "Optimizing locations for the installation of automated external defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting schemes." <u>Applied Geography</u> **35**(1-2): 394-404.
- Huang, C. Y. and T. H. Wen (2014). "Optimal Installation Locations for Automated External Defibrillators in Taipei 7-Eleven Stores: Using GIS and a Genetic Algorithm with a New Stirring Operator." <u>Computational and Mathematical Methods in Medicine</u>.
- Chan, T. C., H. Li, G. Lebovic, S. K. Tang, J. Y. Chan, H. C. Cheng, L. J. Morrison and S. C. Brooks (2013). "Identifying locations for public access defibrillators using mathematical optimization." <u>Circulation</u> 127(17): 1801-1809.

- 4. Siddiq, A. A., S. C. Brooks and T. C. Chan (2013). "Modeling the impact of public access defibrillator range on public location cardiac arrest coverage." <u>Resuscitation</u> **84**(7): 904-909.
- Chan, T. C. Y., D. Demirtas and R. H. Kwon (2016). "Optimizing the Deployment of Public Access Defibrillators." <u>Management Science</u> 62(12): 3617-3635.
- 6. Sun, C. L. F., D. Demirtas, S. C. Brooks, L. J. Morrison and T. C. Y. Chan (2016). "Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization." <u>Journal of the</u> <u>American College of Cardiology</u> **68**(8): 836-845.
- 7. Sun, C. L. F., L. Karlsson, C. Torp-Pedersen, L. J. Morrison, F. Folke and T. C. Y. Chan (2018). "Spatiotemporal AED optimization is generalizable." <u>Resuscitation</u> **131**: 101-107.
- Boutilier, J. J., S. C. Brooks, A. Janmohamed, A. Byers, J. E. Buick, C. Zhan, A. P. Schoellig, S. Cheskes, L. J. Morrison, T. C. Y. Chan and I. Rescu Epistry (2017). "Optimizing a Drone Network to Deliver Automated External Defibrillators." <u>Circulation</u> 135(25): 2454-2465.
- Tierney, N. J., H. J. Reinhold, A. Mira, M. Weiser, R. Burkart, C. Benvenuti and A. Auricchio (2018). "Novel relocation methods for automatic external defibrillator improve out-of-hospital cardiac arrest coverage under limited resources." <u>Resuscitation</u> 125: 83-89.
- Chan, T. C. Y., Z.-J. M. Shen and A. Siddiq (2018). "Robust Defibrillator Deployment Under Cardiac Arrest Location Uncertainty via Row-and-Column Generation." <u>Operations Research</u> 66(2): 358-379.
- Lee, C.-T., Y.-C. Lee and A. Y. Chen (2019). "In-building automated external defibrillator location planning and assessment through building information models." <u>Automation in Construction</u> **106**: 102883.
- Sun, C. L., L. Karlsson, C. Torp-Pedersen, L. J. Morrison, S. C. Brooks, F. Folke and T. C. Chan (2019). "In Silico Trial of Optimized Versus Actual Public Defibrillator Locations." <u>Journal of the</u> <u>American College of Cardiology</u> **74**(12): 1557-1567.